МОДУЛИ ПОЛУПРОВОДНИКОВЫЕ СИЛОВЫЕ М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ

Технические условия ВЛЕИ.435714.001ТУ

	Содержание							
1	Область применения	4						
2								
3	Определения							
4	-							
5								
	5.1 Характеристики	7						
	5.2 Требования к материалам и покупнымизделиям							
	5.3 Комплектность							
	5.4 Маркировка	11						
	5.5 Упаковка	12						
6	Требования безопасности	12						
7	Правила приемки							
	7.1 Общие положения	13						
	7.2 Квалификационные испытания	13						
	7.3 Приемосдаточные испытания							
	7.4 Периодические испытания	17						
	7.5 Типовые испытания	19						
	7.6 Испытания на надежность	19						
8	Методы испытаний	20						
	8.1 Общие положения	20						
	8.2 Проверка на соответствие требованиям к конструкции	20						
	8.3 Проверка электрических параметров	22						
	8.4 Проверка стойкости к механическим воздействиям	25						
	8.5 Проверка стойкости к климатическимвоздействиям	27						
	8.6 Проверка устойчивости корпуса модулей к воздействию неразрушаю							
	щего тока	. 28						
	8.7 Испытание на пожарную безопасность							

9 Транспортирование и хранение
10 Условия эксплуатации
11 Г арантии изготовителя
Приложение А (обязательное) Ссылочные нормативные документы
Приложение Б (обязательное) Предельно допустимые значения параметров
электрических режимов эксплуатации модулей М17
100-1-1 УХЛ3, М17-100-1-2 УХЛ3
Приложение В (обязательное) Перечень прилагаемых документов 40
Приложение Г (обязательное) Перечень контрольно-измерительных прибо
ров и оборудования41
Приложение Д (обязательное) Параметры-критерии годности, их нормы, режимы,
условия и методы измерения модулей М17-100-1-1 УХЛ3,
M17-100-1-2 УХЛЗ
Приложение Е (обязательное) Схемы включения модулей при испытаниях и
измерениях электрических параметров 4 4
Приложение Ж (обязательное) Зависимости электрических параметров от
электрических режимов и температуры модулей 66
Приложение И (обязательное) Схемы электрические принципиальные модулей 72
Лист регистрации изменений

1 Область применения

Настоящие технические условия (далее - ТУ) распространяются на модули полупроводниковые силовые М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ (далее - модули) в металлополимерном корпусе с изолированным основанием МП41.17-1, предназначенные для применения в радиоэлектронной аппаратуре различного конструктивно-функционального назначения.

Модули, поставляемые по настоящим ТУ, должны удовлетворять требованиям ГОСТ 30617 и требованиям, установленным в соответствующих разделах настоящих ТУ.

Нумерация разделов, подразделов и пунктов, принятая в настоящих ТУ, соответствует нумерации аналогичных разделов, подразделов и пунктов ГОСТ 30617.

Если в ТУ требуется дополнение или уточнение какого-либо подраздела ГОСТ 30617, то в соответствующем разделе ТУ приведены только положения, дополняющие или уточняющие данный подраздел ГОСТ 30617.

Основные положения этого подраздела - по ГОСТ 30617.

В ТУ не приведены пункты ГОСТ 30617, не требующие уточнений, при этом нумерация остальных пунктов сохранена в соответствии с ГОСТ 30617.

2 Нормативные ссылки

В настоящих ТУ использованы ссылки на документы по стандартизации, приведенные в приложении А.

3 Определения

Термины, определения, сокращения и буквенные обозначения параметров - по ГОСТ 19095, ГОСТ 25529, ГОСТ 30617, ГОСТ Р 57436.

5 Общие технические требования

Технические требования - по ГОСТ 30617 с дополнениями и уточнениями, приведенными в данном разделе

5.1 Характеристики

Пункты 5.1.1.3 - 5.1.1.9 не применяют.

- 5.1.10 Предельно допустимые значения параметров электрических режимов эксплуатации модулей приведены в таблице Б.1 (приложение Б).
- 5.1.1.12 Сопротивление изоляции между основанием модуля и его выводами должно быть не менее 50 МОм при напряжении 1 000 В в нормальных климатических условиях по ГОСТ 15150.

Требование к сопротивлению изоляции при воздействии относительной влажности 98 % не предъявляют.

5.1.1.13 Электрическая изоляция модулей между основанием и выводами должна выдерживать испытательное напряжение (и_{исп}) 2 500 В переменного тока частотой 50 Гц в течение 1 мин в нормальных климатических условиях по ГОСТ 15150.

Требование к электрической изоляции модулей в условиях воздействия относительной влажности 98 % не предъявляют.

5.1.1.14 Значения электрических параметров модулей при приемке и поставке при эксплуатации (в течение наработки) и хранении (в течение срока сохраняемости) должны соответствовать нормам, установленным в таблице 2.

Таблица 2 - Значения электрических параметров модулей при приемке и поставке, при эксплуатации (в течение наработки) и хранении (в течение срока сохраняемости)

Наименование параметра, единица	Буквенное обозначе-	Норма параметра		Температура окружары среды
измерения (режим измерения)	ние пара- метра	не менее	не более	(корпуса),
Параме	тры транзис	тора		
Начальный ток стока, мкА (иси = 100	¹ 3.yT			
B, $_{\text{Изи}} = 0 \text{ B};$		-	100	25 ± 10
иси = 100 B, изи = 0 B;			750	85 ± 3
$u_{cu} = 85 \text{ B}, u_{3u} = 0 \text{ B})$			75	-60 ± 3
Ток утечки затвора, нА (изи = 20 В, иси	¹ 3.yT			
= 0 B;		-	100	25 ± 10
$и_{3\mu} = -20 B, u_{c\mu} = 0 B$)			I—100I	
Пороговое напряжение, В (изи = иси, 1с = 750 мкА)	^и зи. пор	1,5	6,0	25 ± 10
сопротивление сток-исток в открытом состоянии, Ом (изи = 10 B, 1c = 100 A)	Кси.отк		0,01	25 ± 10
Постоянное прямое напряжение встроенного диода, В изи = 0 В, 1 пр = 100 А)	^и д пр		1,0	25 ± 10
Пара	аметры диод	a		
Постоянное прямое напряжение диода, В $(1_{mp} = 100 \text{ A})$	Ипр	_	1,05	25 ± 10
Постоянный обратный ток диода, мА	1обр		0,1	25 ± 10
$(u_{00p} = 100 \text{ B})$			15	85 ± 3
			0,75	60 ± 3
			•	

5.1.1.15 Модули должны быть стойкими к воздействию статического электричества по I степени жесткости ОСТ 11 073.062.

Допустимое значение статического потенциала - не менее 30 В.

- 5.1.2 Требование надежности
- 5.1.2.2 Вероятность безотказной работы модулей за время наработки $1000\ ext{ч}$ 0,950.
 - 5.1.2.3 Гамма-процентная наработка модулей при у = 95 % в режимах и

условиях эксплуатации (при максимально допустимой температуре перехода $^{\circ}$ ер макс 150 $^{\circ}$ C) должна быть не менее 20 000 ч в пределах срока службы 12 лет.

- 5.1.2.5 Гамма-процентный срок сохраняемости модулей при у = 98 % при хранении в упаковке изготовителя, вмонтированными в аппаратуру и в комплекте ЗИП в условиях отапливаемого хранилища по ГОСТ 21493 должен быть не менее 12 лет.
 - 5.1.3 Требования радиоэлектронной защиты Модули должны быть помехозащищенными.
 - 5.1.4 Требования стойкости к внешним воздействиям
- 5.1.4.1 Модули должны быть механически прочными и сохранять свои параметры после воздействия на них вибрационных нагрузок в диапазоне частот от 10 до 100 Гц с ускорением 50 м/с 2 (5 g) и одиночных ударов длительностью импульса 50 мс и ускорением 40 м/с 2 (4 g).

Группа механического исполнения М27 - по ГОСТ 17516.1.

5.1.4.2 Модули производят в климатическом исполнении по ГОСТ 15150 и ГОСТ 15543.1 УХЛЗ, категория размещения 3 для эксплуатации в атмосфере I по ГОСТ 15150.

Модули должны быть стойкими к воздействию климатических факторов со значениями характеристик, приведенными в таблице 3.

Таблица 3 - Состав и значение внешних воздействующих факторов

Наименование внешнего воздействующего фактора	Наименование характеристик внешнего воздействующего фактора, единица измерения	Значение воздействующего фактора
1	2	3
Повышенная температура	Повышенная рабочая темпе-	
	ратура среды (корпуса), ОС	85
	Повышенная предельная тем-	
	пература среды (корпуса), ОС	85

Окончание таблицы 3

1	2	3
Пониженная температура	Пониженная рабочая температура	
	среды (корпуса), ^о С	-60
	Пониженная предельная тем-	
	пература среды (корпуса), ОС	-60

Изменение температуры	Диапазон изменения темпера-	от минус 60 до плюс	
окружающей среды	туры среды, ОС	85	
Повышенное давление	Значение при эксплуатации, Па	$(86,0 - 106,7) \cdot 10^3$	
	(мм рт. ст.)	(650 - 800)	
Повышенная влажность	Относительная влажность при		
воздуха	25 oc, %	98	

Требование стойкости к воздействию повышенной относительной влажности воздуха обеспечивается при условии покрытия модулей тремя слоями лака марки ЭП-730 по ГОСТ 20824.

5.1.5 Конструктивные требования

Комплект конструкторской документации - ВЛЕИ.435714.001 для модулей М17-100-1-1 УХЛЗ, ВЛЕИ.435714.003 для модулей М17-100-1-2 УХЛЗ.

Перечень прилагаемых документов приведен в таблице В.1 приложения В.1.

- 5.1.5.1 Габаритно-присоединительные размеры модулей должны соответствовать приведенным на габаритном чертеже ВЛЕИ.430209.001ГЧ, прилагаемом к ТУ.
 - 5.1.5.2 Масса модуля должна быть не более 15 г.
 - 5.1.5.3 Модули должны быть герметичными.

Показатель герметичности не регламентируется (монолитный корпус).

- 5.1.5.4 не применяют.
- 5.1.5.5 Электрические схемы модулей должны соответствовать приведенным на рисунках:
 - И1 (приложение И) для модулей М17-100-1-1 УХЛЗ;
 - И2 (приложение И) для модулей М17-100-1-2 УХЛ3.
- 5.1.5.6 Пайка модулей должна обеспечиваться плоской поверхностью концов выводов.
- 5.1.5.7 Выводы модулей, подлежащие электрическому соединению пайкой, должны сохранять способность к пайке без дополнительного облуживания в течение 12 мес. с даты изготовления модулей.

5.2 Требования к материалам и покупным изделиям

Материалы и покупные изделия - по ГОСТ 30617.

5.3 Комплектность

5.3.1 К каждой партии модулей, поставляемых в один адрес, прилагается

этикетка.

5.3.2 Модули поставляют без охладителей.

5.4 Маркировка

Маркировка модулей должна соответствовать ГОСТ 30617.

- 5.4.1 На каждой бирке, прикрепленной к модулю, должны быть нанесены четкими нестирающимися знаками следующие данные:
 - товарный знак предприятия-изготовителя;
 - условное обозначение модуля (исключая вид климатического исполнения);
 - схема электрическая принципиальная модуля;
 - дата изготовления (месяц и год);
 - знак чувствительности к статическому электричеству.

Дату изготовления модулей обозначают четырехзначным числом без разрыва - месяц двумя цифрами и год (последние цифры года). Если месяц обозначен одной цифрой, то перед ней ставят нуль.

Знак чувствительности к статическому электричеству обозначают равносторонним треугольником с вершиной, направленной вверх (А).

Допускается нанесение маркировки лазерной гравировкой на пластмассовую поверхность корпуса модулей.

- 5.4.3 На внутреннюю (групповую) упаковку наносятся следующие данные:
- товарный знак предприятия изготовителя;
- условное обозначение модуля;
- обозначение технических условий;
- количество упакованных модулей;
- дату упаковки (месяц, год);
- штамп отдела технического контроля.
- 5.4.4 На транспортную тару наносятся следующие манипуляционные знаки: «Беречь от влаги», «Верх» по ГОСТ 14192.

5.5 Упаковка

Упаковка - по ГОСТ 30617.

Модули упаковывают во внутреннюю (групповую) упаковку и транспортную тару.

Конструкция элементов упаковки должна допускать возможность переупаковывания.

6 Требования безопасности

Требования безопасности модулей - по ГОСТ 30617.

6.6 Модули должны быть пожаробезопасными.

Модули не должны самовоспламеняться и воспламенять окружающие их элементы и материалы аппаратуры в аварийном электрическом режиме: $1_{np} = 100 \text{ A}$.

7 Правила приемки

Правила приемки модулей - по ГОСТ 30617 с дополнениями и уточнениями, приведенными в настоящем разделе.

7.1 Общие положения

7.1.2 Квалификационные, периодические и типовые испытания проводят на любом типе модулей.

Результаты испытаний одного типа модуля распространяются на модули другого типа.

7.2 Квалификационные испытания

7.2.1 Программа квалификационных испытаний приведена в таблице 4.

Таблица 4 - Программа квалификационных испытаний

таолица + - программа квали	Номер пара-	Температура	Метод конт	роля
Вид проверки или испытания	годности в соответствии с таблицей Л	окру- жающей среды (корпуса), °C	по стандарту	пункт ТУ
1	2	3	4	5
Проверка внешнего вида, га-	-	25 ± 10	405-1	8.2.1
баритно-присоединительных			404-1	
размеров и массы, правильно-			406-1	
сти и качественности марки-			ГОСТ 20.57.406	
ровки, комплектности, упа-			ГОСТ 18620, 7.1	
ковки			ГОСТ 23216	
			5.2.1, 5.2.4.2	
Проверка теплового сопро-		-	-	8.3.18
тивления	8, 13			8.3.19
Проверка электрических па-		25 ± 10	-	8.3.11
раметров	1, 4, 5, 6, 7, 9,			8.3.12

10		8.3.13
		8.3.14
		8.3.15
		8.3.16
		8.3.17

Продолжение таблицы 4

1 1	2	3	4	5
Измерение сопротивления		25 ± 10	-	8.3.10
изоляции	-			
Проверка электрической		25 ± 10	-	8.3.9
прочности изоляции	-			
Проверка на герметичность	1, 5, 9, 10	50 ± 2	401-6	8.2.2
			ГОСТ 20.57.406	
Испытания на синусоидаль-		25 ± 10	103-1.6	8.4.1
ную вибрацию (вибропроч-			ГОСТ 20.57.406	
ность)				
Критерии после испытания	1, 5, 9, 10	27 . 10		0.4.0
Испытание на воздействие		25 ± 10	106-1	8.4.2
одиночных ударов	4 7 0 40		ΓΟCT 20.57.406	
Критерии после испытания	1, 5, 9, 10	0.7 2		0.7.4
Испытание на воздействие		85 ± 3	201-1	8.5.1
повышенной рабочей темпе-				
ратуры среды				
Критерии в процессе испыта-				
ния	2, 11			
Критерии после испытания	1, 10			
Испытание на воздействие		-60 ± 3	203-1	8.5.2
пониженной температуры			ΓΟCT 20.57.406	
среды				
Критерии в процессе испыта-				
ния	3, 12			
Критерии после испытания	1, 10	((0 + 2)	205 1	0.5.2
Испытание на воздействие из-		(-60 ± 3) -	205-1	8.5.3
менения температуры среды	1 7 0 10	(85 ± 3)	ГОСТ 20.57.406	
Критерии после испытания	1, 5, 9, 10	40	207.2	0.7.4
Испытание на воздействие		40 ± 2	207-2	8.5.4
повышенной влажности воз-			ΓΟCT 20.57.406	
Духа	1 5 0 10			
Критерии после испытания	1, 5, 9, 10		400.2	0.7
Испытание на пожарную без-			409-2 ΓΟCT 20.57.406	8.7
опасность			1 001 20.37.400	

Окончание таблицы 4

1	2	3	4	5
Термоциклические испытания			ГОСТ 30617, 8.8	8.3.1
	1, 5, 9, 10, 7,			
	13			
Испытания на способность к		_{тпаяльника} == (350	402-2	8.4.4
пайке		± 10)	ГОСТ 20.57.406	
Проверка на теплостойкость	1, 5, 9, 10	— 10) ^Т паяльника ⁼	403-2	8.4.5
			ГОСТ 20.57.406	

7.2.2 Проверке габаритных размеров тары подвергают одну единицу внутренней (групповой) упаковки и транспортной тары в составе квалификационных испытаний.

Испытанию на удар при свободном падении подвергают одну единицу транспортной тары с упакованным макетом в составе квалификационных испытаний.

Выборки комплектуют по следующим правилам:

- для квалификационных испытаний (без учета термоциклический испытаний и испытаний на способность и теплостойкость к пайке) план двухступенчатого выборочного контроля в соответствии с таблицей 5;
- для термоциклических испытаний в составе квалификационных испытаний план двухступенчатого выборочного контроля в соответствии с таблицей 4;
- испытание на воздействие аварийных перегрузок план одноступенчатого контроля с объемом выборки n=3 шт. и приемочным числом равным нулю;
- для испытаний на способность к и теплостойкость при пайке план одноступенчатого контроля с объемом выборки n=2 шт. и приемочным числом равным нулю.

Таблица 5 - План двухступенчатого выборочного контроля

Выборка	Объем выборки, шт.	Суммарный объем выборки, шт.	Приемочное число	Браковочное число
Первая	13	13	0	2
Вторая	13	26	1	2

7.3 Приемо-сдаточные испытания

Приемо-сдаточные испытания - по ГОСТ 30617.

Приемо-сдаточные испытания проводят сплошным контролем. Перед испытанием модули выдерживают в нормальных климатических условиях испытаний по ГОСТ 15150 в течение трех суток.

Программа приемо-сдаточных испытаний приведена в таблице 6. Таблица 6 - Программа приемо-сдаточных испытаний

	Номер пара-	Температура	Метод кон	троля
Вид проверки или испытания	метра-критерия годности в соответствии с таблицей Д (приложение Д)	окру- жающей среды (корпуса), °С	по стандарту	пункт ТУ
Проверка внешнего вида, га-	-	25 ± 10	405-1	8.2.1
баритно-присоединительных			404-1	
размеров и массы, правильно-			406-1	
сти и качественности марки-			ГОСТ 20.57.406	
ровки, комплектности, упа- ковки			ГОСТ 18620, 7.1	
Проверка теплового сопро-		-	-	8.3.18
тивления	8, 13			8.3.19
Проверка электрических па-		25 ± 10	-	8.3.11
раметров	1, 4, 5, 6, 7, 9,			8.3.12
	10			8.3.13
				8.3.14
				8.3.15
				8.3.16 8.3.17
Измерение сопротивления	-	25 ± 10	-	8.3.10
изоляции				
Проверка электрической прочности изоляции	-	25 ± 10	-	8.3.9

7.4 Периодические испытания

Периодические испытания - по ГОСТ 30617 с дополнениями и уточнениями, приведенными в данном разделе..

7.4.1 Программа периодических испытаний приведена в таблице 7. Таблица 7 - Программа периодических испытаний

	Номер пара-		Метод кон	нтроля
Вид проверки или испытания	метра-критерия годности в соответствии с таблицей Д (приложение Д)	Температура окружающей среды (корпуса), °С	по стандарту	пункт ТУ
1	2	3	4	5
Проверка внешнего вида, га-	-	25 ± 10	405-1	8.2.1
баритно-присоединительных			404-1	
размеров и массы, правильно-			406-1	
сти и качественности марки-			ГОСТ 20.57.406	
ровки, комплектности, упа-			ГОСТ 18620, 7.1	
ковки			ГОСТ 23216,	
			5.2.1, 5.2.4.2	
Проверка теплового сопротивления Проверка электрических па-		- 25 ± 10	- -	8.3.18 8.3.19 8.3.11
раметров	1, 4, 5, 6, 7, 9,			8.3.12
	10			8.3.13
				8.3.14
				8.3.15
				8.3.16
				8.3.17
Измерение сопротивления		25 ± 10	-	8.3.10
изоляции	-			
Проверка электрической		25 ± 10	-	8.3.9
прочности изоляции				
		1		

Окончание таблицы 7

2 1, 5, 9, 10	$\frac{3}{50 \pm 2}$	401-6	5
1, 5, 9, 10	50 ± 2	401.6	
			8.2.2
		ГОСТ 20.57.406	
	25 ± 10	103-1.6	8.4.1
		ГОСТ 20.57.406	
1, 5, 9, 10			
	25 ± 10	106-1	8.4.2
		ГОСТ 20.57.406	
1, 5, 9, 10			
	85 ± 3	201-1	8.5.1
2, 11			
1, 10			
,	-60 ± 3	203-1	8.5.2
		ГОСТ 20.57.406	
3, 12			
1, 10			
	(-60 ± 3) - (85 ± 3)	205-1 ГОСТ 20.57.406	8.5.3
1, 5, 9, 10			
	40 ± 2	207-2	8.5.4
		ГОСТ 20.57.406	
1, 5, 9, 10			
	-	ГОСТ 30617, 8.8	8.3.1
1. 5. 9. 10.		,	
<i>,</i>	^т паяльника =	402-2	8.4.4
-			
1, 5, 9, 10	^Т паяльника =	403-2	8.4.5
	1, 5, 9, 10 2, 11 1, 10 3, 12 1, 10 1, 5, 9, 10 1, 5, 9, 10 1, 5, 9, 10 -	$1, 5, 9, 10$ 25 ± 10 $1, 5, 9, 10$ 85 ± 3 $2, 11$ $1, 10$ -60 ± 3 (85 ± 3) $1, 5, 9, 10$ 40 ± 2 $1, 5, 9, 10$ $-1, 5, 9, 10$	ГОСТ 20.57.406 1, 5, 9, 10 25 ± 10 106-1 ГОСТ 20.57.406 1, 5, 9, 10 85 ± 3 201-1 2, 11 1, 10 -60 ± 3 -60 ± 3) - 205-1 ГОСТ 20.57.406 1, 5, 9, 10 40 ± 2 207-2 ГОСТ 20.57.406 1, 5, 9, 10 - ГОСТ 30617, 8.8 1, 5, 9, 10, 7, 13 - (350 ± 10) 1, 5, 9, 10 1 Паяльника = 402-2

7.4.2 Проверке габаритных размеров тары подвергают одну единицу внутренней (групповой) упаковки и транспортной тары в составе периодических испытаний.

Испытанию на удар при свободном падении подвергают одну единицу транспортной тары с упакованным макетом в составе периодических испытаний.

Выборки комплектуют по следующим правилам:

- для периодических испытаний (кроме термоциклических испытаний при испытаниях на безотказность и испытаний на способность к пайке и теплостойкость при пайке) план двухступенчатого выборочного контроля в соответствии с таблицей 8;
- для термоциклических испытаний при испытаниях на безотказность в составе периодических испытаний - план двухступенчатого выборочного контроля в соответствии с таблицей 8;
- для испытаний на способность к пайке и теплостойкость при пайке в составе периодических испытаний объем выборки и план контроля в соответствии с 7.2.2.

Таблица 8 - План двухступенчатого выборочного контроля

Выборка	Объем выборки, шт.	Суммарный объем выборки, шт.	Приемочное число	Браковочное число
Первая	5	5	0	2
Вторая	5	10	1	2

7.4.4 Периодические испытания (с учетом термоциклических испытаний при испытаниях на безотказность) проводят один раз в два года.

7.5 Типовые испытания

Типовые испытания - по ГОСТ 30617.

7.6 Испытания на надежность

7.6.1 Испытания на надежность - по ГОСТ 30617.

9 Транспортирование и хранение

- 9.1 Транспортирование модулей по ГОСТ 30017.
- 9.2 Хранение модулей по ГОСТ 21493.

Срок хранения модулей не должен превышать значения гамма-процентного срока сохраняемости (5.1.2.5).

10 Указания по эксплуатации

Указания по применению и эксплуатации модулей - по ГОСТ 30617 с дополнениями и уточнениями, изложенными в настоящем разделе.

- 10.1 Пайка модулей на плату групповым способом должна производиться по следующему режиму:
 - температура жала группового паяльника, ^оС, не более 270;
 - время пайки, с, не более 2,0;
 - интервал между двумя повторными пайками одних и тех же выводов одного модуля, мин, не менее 5,0.

Допускается производить пайку на печатную плату одножальным паяльником по следующему режиму:

- температура жала паяльника, ОС, не более 270;
- время пайки каждого вывода, с, не более 3,0;
- интервал между пайками соседних выводов, с, не менее 3,0;
- интервал между двумя повторными пайками одних и тех же выводов, c, не менее 20,0.

В процессе выполнения операций необходимо обеспечивать пайку плоской поверхности концов выводов.

Марка припоя ПОС 61 по ГОСТ 21930, применяемый флюс: 25 % по массе канифоли (ГОСТ 19113) и 75 % по массе изопропилового спирта (ГОСТ 9805) или этилового спирта (ГОСТ 5962 или ГОСТ Р 55878).

Число допускаемых перепаек выводов модулей - 3.

- 10.2 Допускается применение модулей в аппаратуре, предназначенной для эксплуатации в условиях воздействия факторов тропического климата, соляного тумана, инея и росы при покрытии модулей в аппаратуре тремя слоями лака марки ЭП-730 по ГОСТ 20824 с последующей сушкой.
- 10.3 При установке в аппаратуру модуль должен плотно прилегать к теплоотводу. Контактирующая поверхность должна иметь шероховатость Ra не более 10 мкм, отклонения от плоскости не более 0,1 мм.

- 10.4 Для улучшения теплового баланса установку модулей на монтажную поверхность рекомендуется осуществлять с помощью теплопроводящий паст типа КПТ-8 ГОСТ 19783.
- 10.5 При всех режимах эксплуатации модуля не допускается превышать максимально допустимую температуру p-n перехода 150 $^{\circ}$ C.
- 10.6 Зависимости параметров модулей от электрических режимов и условий эксплуатации модулей приведены на рисунках Ж.1 Ж.12.
 - 10.7 Справочные данные модулей приведены в таблице 8.

Таблица 8 - Справочные данные модулей

таолица 8 - Справочные данные	модуло	<u>ги</u>					
			Значение параметра				
	e de de	M17-	100-1-1	УХЛ3	M17-	100-1-2	УХЛ3
Наименование параметра, единица измерения (режим измерения)	Буквенное обозначение параметра	мини- маль- ное	типовое		мини- маль- ное	типо-	макси- маль- ное
I	Тарамет	ры транз	истора				
Входная ёмкость, пФ [изи = 0 B, иси = 25 B, f = 1 МГц, ир = (25 ± 10) ос]	С11и		8 700			8 700	
Проходная ёмкость, п Φ [изи = 0 B, иси = 25 B, f = 1 М Γ ц, ир = (25 ± 10) оС]	С12и		360			360	
Выходная ёмкость, пФ [изи = 0 B, иси = 25 B, f = 1 МГц, ир = (25 ± 10) ос]	С22и		2 400			2 400	
	Паран	метры ди	юда				
	Сд		2 100			2 100	
Общая ёмкость, пФ [иобр = 5 B, f = $1 \text{ M}\Gamma$ ц, ир = $(25 \pm 10) \text{ OC}$]							

11 Гарантии изготовителя

Гарантии изготовителя - по ГОСТ 30617 и требованиям, приведенным в данном разделе ТУ.

- 11.1 Изготовитель гарантирует соответствие качества каждого модуля требованиям настоящих ТУ при соблюдении потребителем условий и правил хранения, транспортирования, монтажа и эксплуатации, установленных в ТУ.
 - 11.2 Гарантийный срок хранения модулей 10 лет.

Гарантийная наработка - 10 000 ч в пределах гарантийного срока.

Гарантийный срок исчисляют с даты изготовления модулей.

1 1 1 1

приложение Б

(обязательное)

Предельно допустимые значения параметров электрических режимов эксплуатации модулей M17-100-1-1 УХЛЗ, M17-100-1-2 УХЛЗ

Таблица Б.1 - Предельно допустимые значения параметров электрических эксплуатации модулей М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ

эксплуатации модулси IVII / -100-1-1 У X313, IVII / -100	0-1-2 JAJIJ		
Наименование параметра, единица измерения (режим измерения)	Буквенное обо- значение параметра	Норма параметра	Номер пункта примечания
1	2	3	4
Параметры транзист	тора		
Максимально допустимое постоянное напряже-	Иси тах		1
ние сток-исток, В		100	
(при температуре корпуса от плюс 15 °C до плюс		100	
85 °C)			
Максимально допустимое постоянное напряже-	иЗИ тах		2
ние затвор-исток, В		± 20	
Максимально допустимый постоянный ток стока,	^I C max		3
A		100	
(при изи = 15 В, температуре корпуса от минус		100	
60 °C до плюс 60 °C)			
Максимально допустимый импульсный ток стока,	¹ C(и) max		4
A		300	
(при $u_{3H} = 15 \text{ B}, \tau_{H} < 20 \text{ мкс}, Q > 1 000,$			
температуре корпуса от минус 60 °C до плюс			
60 °C)			
Максимально допустимый прямой ток встроен-	¹ д пр max		3
ного диода, А		100	
(при $u_{3H} = 0$ B, температуре корпуса от минус		100	
60 °C до плюс 60 °C)			
			_1

1	2	3	4
Максимально допустимый повторяющийся	¹ д пр. и. п max		4
импульсный прямой ток встроенного диода, А		300	
(при изи = 15 B, $T_{\text{и}} < 20$ мкс, $Q > 1 000$, температуре			
корпуса от минус 60 °C до плюс 60 °C)			
Тепловое сопротивление переход-корпус, °С/Вт	^R Т пер-кор1	0,6	
Максимально допустимая температура перехода,			
°C	1пер тах1	150	
Параметры диода	a		
Максимально допустимое постоянное обратное	^и обр тах		2
напряжение, В		100	
Максимально допустимое повторяющееся им-	^и обр,и,п max		2
пульсное обратное напряжение диода, В (т _и = 10		100	
мкс, $Q = 2$)			
Максимально допустимый средний прямой ток, А	¹ пр, ср max		5
(при температуре корпуса от минус 60 °C до плюс		100	
80 °C)		100	
Максимально допустимый повторяющийся им-	¹ пр, и, п max		6
пульсный прямой ток, А		300	
(при $\tau_{\text{и}}$ < 20 мкс, Q > 1 000, при температуре кор-			
пуса от минус 60 °C до плюс 80 °C)			
Тепловое сопротивление переход-корпус, °С/Вт	^R Т пер-кор2	1,2	
Максимально допустимая температура перехода,	t юр max2		
OC		150	
Параметры модул	R		- 1
Напряжение изоляции модуля между основанием	^Ц изол.		7, 8
и соединенными вместе выводами (действующее			
значение), В		500	

Окончание таблицы Б.1

1	2	3	4
Сопротивление изоляции модуля между основа-	^R H'!≪J.		7, 9
нием и соединенными вместе выводами (дей-			
ствующее значение), Мом, не менее		50	

Примечания

- 1 В диапазоне температур корпуса от минус 60 °C до плюс 15 °C максимально допустимое постоянное напряжение сток-исток линейно возрастает от 85 до 100 В.
 - 2 Для всего диапазона температур корпуса от минус 60 °C до плюс 85 °C.
- 3 В диапазоне температур корпуса от плюс 60 °C до плюс 85 °C максимально допустимый постоянный ток стока и максимально допустимый прямой ток встроенного диода линейно снижаются от 100 до 85 А.
- 4 В диапазоне температур корпуса от плюс 60 °C до плюс 85 °C максимально допустимый импульсный ток стока и максимально допустимый повторяющийся импульсный прямой ток встроенного диода линейно снижается от 300 до 255 А.
- 5 В диапазоне температур корпуса от плюс 80 °C до плюс 85 °C максимально допустимый средний прямой ток линейно снижается от 100 до 93 А.
- 6 В диапазоне температур корпуса от плюс 80 °С до плюс 85 °С максимально допустимый повторяющийся импульсный прямой ток линейно снижается от 300 до 279 А.
 - 7 Значение параметра указано при нормальных климатических условиях.
 - 8 Напряжение практически синусоидальной формы частотой 50 Гц в течение 1 мин.
 - 9 Испытательное напряжение 1 000 В.

приложение ж

(обязательное)

Зависимости электрических параметров модулей от электрических режимов и температуры

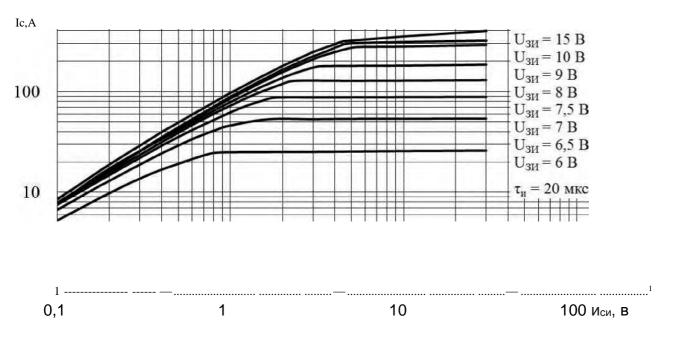


Рисунок Ж.1 - Типовые зависимости тока стока от напряжения сток-исток транзистора VT модулей М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ при температуре корпуса $t_w = (25 \pm 10)$ °C

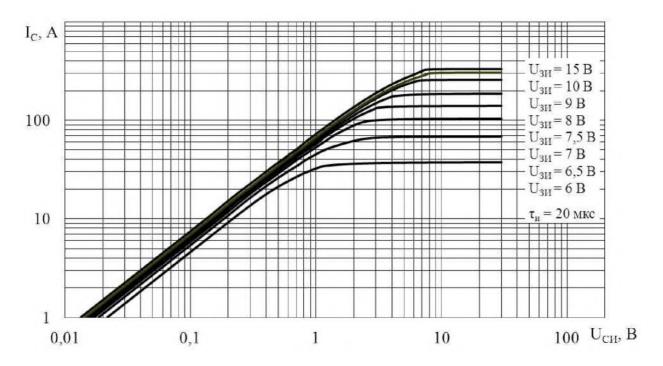


Рисунок Ж.2 - Типовые зависимости тока стока от напряжения сток-исток транзистора VT модулей М17-100-1-1 УХЛ3, М17-100-1-2 УХЛ3 при температуре корпуса $t_w = (85 \pm 3) \text{ oc}$

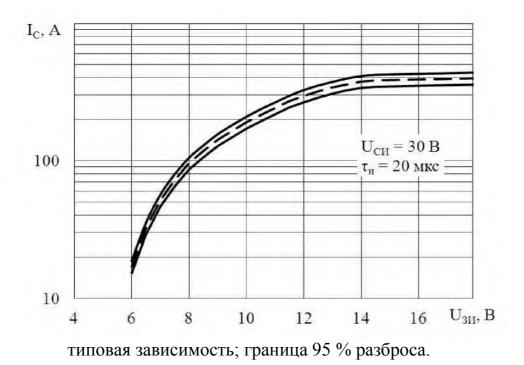


Рисунок Ж.3 - Область изменения тока стока в зависимости от напряжения затвор-исток транзистора VT модулей М17-100-1-1 УХЛ3, М17-100-1-2 УХЛ3 при температуре корпуса $^{\wedge}_{op}$ = (25 ± 10) $^{\circ}\mathrm{C}$

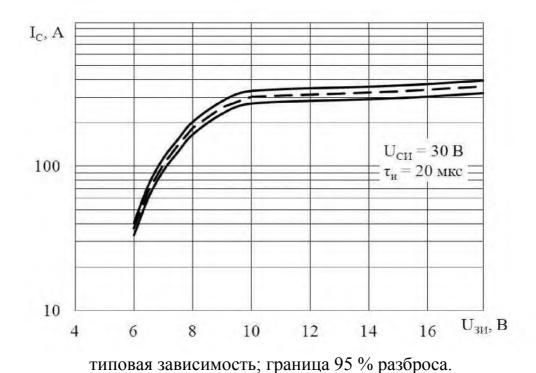


Рисунок Ж.4 - Область изменения тока стока в зависимости от напряжения затвор-исток транзистора VT модулей М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ при температуре корпуса $t_{\rm w}$ = (85 \pm 3) ос

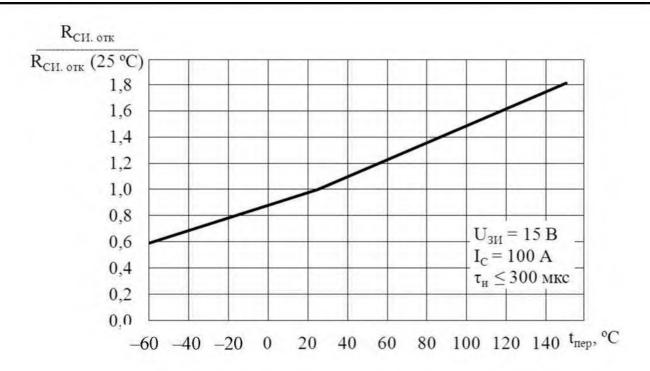
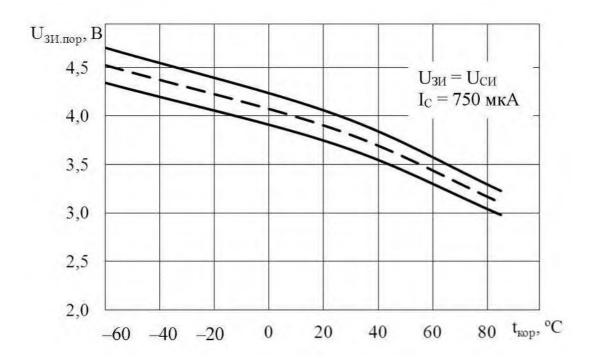
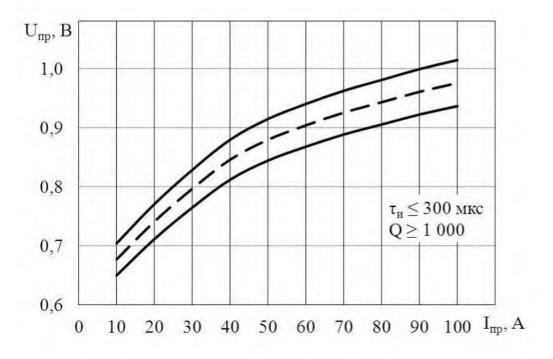




Рисунок Ж.5 - Зависимость относительной величины сопротивления стокисток в открытом состоянии от температуры перехода транзистора VT модулей М17-100-1-1 УХЛ3, М17-100-1-2 УХЛ3

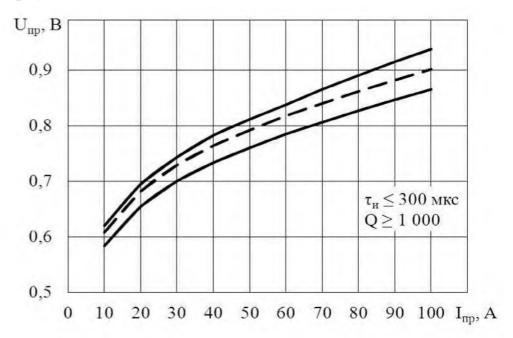

типовая зависимость; граница 95 % разброса.

Рисунок Ж.6 - Область изменения порогового напряжения затвор-исток в зависимости от температуры корпуса транзистора VT модулей М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ

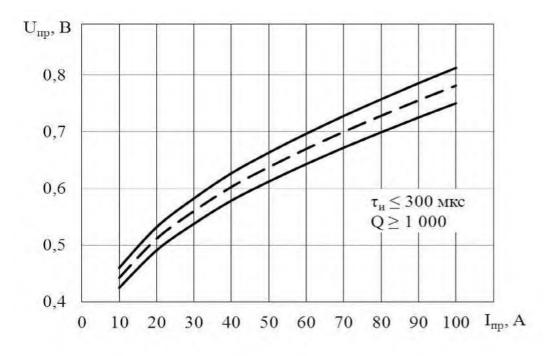
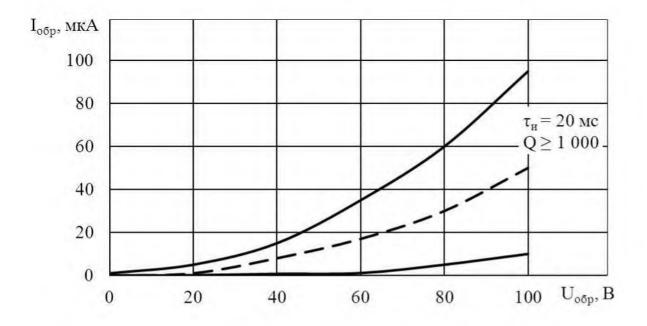

типовая зависимость; граница 95 % разброса.

Рисунок Ж.7 - Область изменения прямого напряжения в зависимости от прямого тока диода VD модулей М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ при температуре корпуса $t_{\rm w}$ = (-60 \pm 3) $^{\rm O}{\rm C}$

типовая зависимость; граница 95 % разброса.

Рисунок Ж.8 - Область изменения прямого напряжения в зависимости от прямого тока диода VD модулей М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ при температуре корпуса t_{Kop} = (25 \pm 10) ос



----- типовая зависимость; граница 95 % разброса.

Рисунок Ж.9 - Область изменения прямого напряжения в зависимости от прямого тока диода VD модулей М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ при температуре корпуса $t_w = (85 \pm 3)$ $^{\circ}$ C

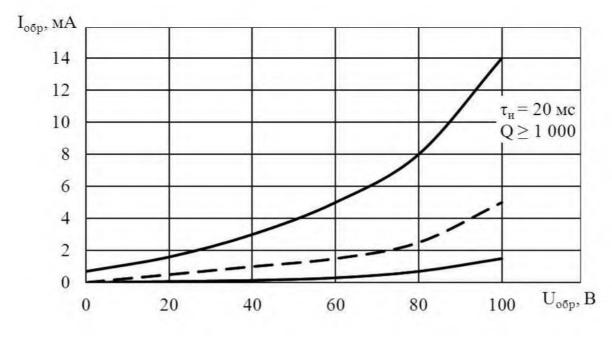


Рисунок Ж.10 - Область изменения обратного тока в зависимости от обратного напряжения диода VD модулей М17-100-1-1 УХЛ3, М17-100-1-2 УХЛ3 при температуре корпуса t_{Kop} = (-60 \pm 3) ос

типовая зависимость; граница 95 % разброса.

Рисунок Ж.11 - Область изменения обратного тока в зависимости от обратного напряжения диода VD модулей М17-100-1-1 УХЛЗ, М17-100-1-2 УХЛЗ при температуре корпуса $^{\circ}_{op}$ = (25 ± 10) $^{\circ}$ C

типовая зависимость; граница 95 % разброса.

Рисунок Ж.12 - Область изменения обратного тока в зависимости от обратного напряжения диода VD модулей М17-100-1-1 УХЛ3, М17-100-1-2 УХЛ3 при температуре корпуса t_w = (85 ± 3) ос

приложение и

(обязательное)

Схемы электрические принципиальные модулей

Рисунок И.1 - Схема электрическая принципиальная модуля М17-100-1-1 УХЛЗ

Таблица И.1 - Назначение выводов модуля М17-100-1-1 УХЛЗ

Номер	Функциональное назначение	Номер	Функциональное назначение
вывода	вывода	вывода	вывода
1	Свободен	10	Свободен
2	Свободен	11	Свободен
3	Затвор транзистора VT	12	Свободен
4	Источник управления транзистора VT	13	Свободен
5	Свободен	14	Свободен
6	Свободен	1.5	Сток транзистора VT,
7	Свободен	15	анод диода VD
8	Свободен	16	Исток транзистора VT
9	Свободен	17	Катод диода VD

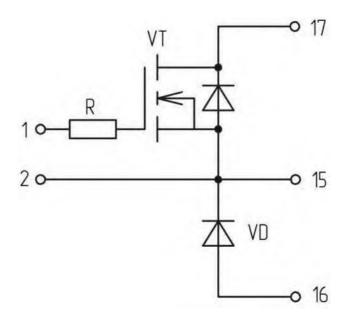


Рисунок И. 2 - Схема электрическая принципиальная модуля М17-100-1-2 УХЛЗ

Таблица И.2 - Назначение выводов модуля М17-100-1-2 УХЛЗ

Номер	Функциональное назначение	Номер	Функциональное назначение
вывода	вывода	вывода	вывода
1	Затвор транзистора VT	10	Свободен
2	Источник управления транзи- стора VT, катод диода VD	11	Свободен
3	Свободен	12	Свободен
4	Свободен	13	Свободен
5	Свободен	14	Свободен
6	Свободен	15	Исток транзистора VT, катод диода VD
7	Свободен	16	Анол диоло VD
8	Свободен	10	Анод диода VD
9	Свободен	17	Сток транзистора VT

Лист регистрации изменений

Пист регистрации изменении Номера листов (страниц) Входящий									
Изм.	Ном изме- ненных	иера лист заме- ненных	ов (стра новых	ниц) анну- лиро- ванных	Всего листов (страниц) в доку- менте	Номер доку- мента	Входящий номер сопроводительного документа и дата	Под- пись	Дата